
Journal of Computational Physics 221 (2007) 1–8

www.elsevier.com/locate/jcp
Quiet direct simulation Monte-Carlo with random timesteps

William Peter *

Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, United States

Received 10 August 2005; received in revised form 15 May 2006; accepted 1 June 2006
Available online 14 August 2006
Abstract

Use of a high-order deterministic sampling technique in direct simulation Monte-Carlo (DSMC) simulations eliminates
statistical noise and improves computational performance by orders of magnitude. In this paper it is also shown that if a
random timestep is used in place of a fixed timestep, there is an additional improvement in performance. This performance
can be increased by using a timestep that samples a random variable with a high-kurtosis probability density function. As a
simple example of the method, the one-dimensional diffusion equation with an exponentially-distributed timestep is sim-
ulated, and a performance gain of approximately two is obtained. Applications to numerical simulations of fluids and plas-
mas are indicated.
� 2006 Elsevier Inc. All rights reserved.

PACS: 02.50.Ey; 02.70.Tt; 47.11.+j; 52.65.�y

Keywords: Particle-in-cell methods; Direct simulation Monte-Carlo; Stochastic processess
1. Introduction

Finite-difference time domain (FDTD) fluid and particle-in-cell simulations use a fixed timestep dt to
update the field quantities [1,2]. Here I will discuss the advantages of using an exponentially-distributed time-
step [3]. Because the timestep dt is random with an exponential distribution, the exact time t = t + dt is not
formally known. The relevant time in a random timestep code is just the expectation value Ætæ, which is equiv-
alent to the ‘‘sure’’ time ‘‘t’’ for a fixed timestep code. The motivation for using random timesteps in physics
simulation codes is illustrated with a simple example based on the diffusion equation. In general, this random
timestep method may be applicable to the wide range of simulation codes (such as fluid and plasma codes)
described by the Fokker–Planck equation [4,5].

The direct simulation Monte-Carlo (DSMC) method is the principal computational method for fluids and
rarefied flows involving gases and vapors having low-density regions and boundary layers [6–8]. It also has
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.06.008

* Tel.: +1 240 228 3694; fax: +1 240 228 5950.
E-mail addresses: bill.peter@jhuapl.edu, bill.peter@gmail.com.

mailto:bill.peter@jhuapl.edu
mailto:bill.peter@gmail.com


2 W. Peter / Journal of Computational Physics 221 (2007) 1–8
application to the simulation of microelectromechanical systems (MEMS) such as micropumps, microvalves,
and microturbines [9]. Although the DSMC method is extensible to any process described by the Fokker–
Planck equation, it is deficient as a computational tool since its error is inversely proportional to the square
root of the sample size [9–11]. The slow convergence of the method necessitates the use of a large number
(N > 103) of computational particles per grid cell. Hence, DSMC may not be practical for a number of
applications.

As a remedy, some recent publications have proposed using the Burnett equations [12], or variance-reduc-
tion techniques such as information preservation DSMC (also called DSMC-IP) [13,14] or molecular block
DSMC (also called MB-DSMC) [15]. These hybrid techniques are themselves problematic. For example, at
large Knudsen number the Burnett equations are not only quite complicated but also unstable to small wave-
lengths [9]. In addition, results for the MB-DSMC technique have been found to significantly disagree with
those of classical DSMC [10].

The quickly converging simulation technique called quiet direct simulation Monte-Carlo (QDSMC) has
been shown to have application to plasma and fluid flow [16,17] and other processes described by the Fok-
ker–Planck equation. Because it is based on high-order deterministic sampling, instead of random sampling,
no stochastic noise is generated. In this paper, the use of QDSMC with an exponential timestep is introduced.
It is shown that even for the simple example of one-dimensional diffusion, simulation times can be improved
over QDSMC by at least a factor of two.
2. Quiet direct simulation Monte-Carlo

The approach of quiet direct simulation Monte-Carlo (QDSMC) simulations is to replace the stochastic
advance of a particle in phase space by a deterministic sampling chosen to preserve the low order moments
of the normal random variable N(0, 1). For example, a normal (Weiner) update of a particle initially at a posi-
tion x(t) is defined by
xðt þ dtÞ ¼ xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2Ddt
p

Nð0; 1Þ ð1Þ

where dt is a fixed timestep, and N(0, 1) is a normal random variable with zero mean and unit variance [5].
Since the probability density defined by N(0, 1) is given by p(x) = (2p)�1/2exp(�x2/2), QDSMC uses weights
wj and abscissas qj for which the Gaussian quadrature approximation [16–21]
Z 1

�1

dxffiffiffiffiffiffi
2p
p e�x2=2f ðxÞ ¼

XJ

j¼1

wjf ðqjÞ ð2Þ
becomes exact when the function f(x) is a linear combination of the 2J � 1 polynomials x0, x1, . . . ,x2J�1. The
quantities qj and wj are known as Gauss–Hermite parameters [19–21].

Unlike lower-order quadrature schemes like Simpson’s method, which involve evaluating f(x) at evenly
spaced points xj on the grid, Gaussian quadrature is a high-order integration scheme for which the sampling
points and their corresponding weights are chosen to satisfy Eq. (2) [19,20]. In comparison, Monte-Carlo inte-
gration is a low-order scheme for which the sampling points are chosen randomly, and the weights wj = 1/N
are equal.

The equivalent to Eq. (1) using Gaussian quadrature is
xðt þ dtÞ ¼ xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2Ddt
p

qi ð3Þ

When calculating expectation values with Eq. (3), each abscissa qi is weighted by its corresponding weight wi.
3. Using random timesteps to push particles

A normal update x(t)! x(t + dt) defined by Eq. (1) uses samples realized from a normal random variable.
It might be advantageous in some cases to use a different probability density function. For example, consider
the case where the magnitude of the timestep dt is not fixed, but distributed exponentially with a ‘‘rate’’ k, so
that the probability density is p(t) = kexp(�kt) [4,5]. The probability that dt > t is



W. Peter / Journal of Computational Physics 221 (2007) 1–8 3
Pr½dt > t� ¼
Z 1

t
pðtÞdt ¼ expð�ktÞ ð4Þ
Consider now a normal (Weiner) increment Wdt beginning at the origin at t = 0. Following Jansons and Lythe
[3], we calculate the probability that after a timestep dt, Wdt > x. This is
Pr½W dt > x� ¼
Z 1

0

dt pðtÞ
Z 1

0

dx Gðx; tj0; 0Þ ¼
Z 1

0

dt pðtÞ 1

2
� 1

2
erfðx=

ffiffiffiffiffiffiffiffi
4Dt
p

Þ
� �

ð5Þ
where
erfðxÞ ¼ 2

p

Z x

0

expð�y2Þdy: ð6Þ
Performing the integration in Eq. (5), one finds that
Pr½W dt > x� ¼ Pr½W dt < �x� ¼ 1

2
expð�x

ffiffiffiffiffiffiffiffiffi
k=D

p
Þ ð7Þ
Hence, Wdt has a symmetric exponential, or bi-exponential distribution. Compared to a Gaussian, this distri-
bution is highly peaked near the origin. Note that the exact value of dt is not formally known, although the
mean timestep is
hdti ¼ 1=k ð8Þ

The elapsed time after N steps is a random variable with mean N/k. This time Ætæ = N/k is analogous to the
time t = Ndt for a fixed-timestep simulation. An increment equivalent to the normal fixed-timestep case in Eq.
(1) is now [3]
xðt þ dtÞ ¼ xðtÞ þ
ffiffiffiffiffiffiffiffiffi
D=k

p
sp ð9Þ
where s is a random variable that can take the values +1 or �1, and p is an exponentially-distributed random
variable defined in Eq. (4).

Consider now the case of QDSMC for a bi-exponentially distributed random timestep. Because the prob-
ability density function is now symmetric exponential, Gaussian quadrature is determined by Gauss—
Laguerre abscissas and weights [19,21]
Z 1

�1

dxffiffiffiffiffiffi
2p
p e�x

ffiffiffiffiffiffi
k=D
p

f ðxÞ ¼
XJ

j¼1

wjf ðqjÞ ð10Þ
Sample paths are then generated by
xðt þ dtÞ ¼ xðtÞ þ
ffiffiffiffiffiffiffiffiffi
D=k

p
qi ð11Þ
where each abscissa qi is understood to represent the symmetric pair (qi, �qi).
Formally, Eq. (9) with a symmetric exponential random variable replaces Eq. (1) with a normal random

variable. The interpretation of Eq. (9) is that it describes a process with a random time step (with a bi-expo-
nential distribution), but it could also be interpreted as describing a constant time step and random displace-
ment (generated with a bi-exponential random variable).

4. Summary of numerical results and conclusions

As a numerical example, assume an initial line mass f(x) = 1 situated at �8 6 x 6 8 on a one-dimensional
grid defined in the region �24 6 x 6 24. The time dependence of the mass function f(x) is described by the
one-dimensional diffusion equation
of
ot
¼ D

o
2f

ox2
ð12Þ
with D = 1. The total number of grid cells is taken to be Nc = 192, giving a cell spacing L = 48/192 = 0.25.
A plot of the mass function f(x) at t = 0 is shown at the top of Fig. 1, and the analytic solution of f(x) at
t = 19 is shown at the bottom of Fig. 1.



4 W. Peter / Journal of Computational Physics 221 (2007) 1–8
Numerical integration of the diffusion equation is done by particle-in-cell (PIC) techniques [2], and pro-
ceeds as follows: at some initial time t0, N particles are created at each grid point xi of a spatial mesh where
the mass function f(xi, t0) is defined. Each particle created at xi carries a fraction wi of the total mass f(xi, t) at
the grid point xi. Then each particle is displaced from x(t) = xi to x(t + dt) according to a given Weiner incre-
ment. The particle’s new position on the numerical grid is then used to weight its mass back to the grid, and
the particle is destroyed. Linear weighting (also called area weighting) is used to assign the particle mass to the
mesh [2]. A new set of N particles is created at the next timestep to further advance the mass.

For comparison of the different integration techniques, a PIC simulation code was written to handle each of
the following four cases: (a) the classic DSMC method based on Eq. (1) with random samples of a normal
variable, (b) the DSMC method based on Eq. (9) with random samples of a bi-exponential, (c) the QDSMC
method based on Eq. (3) with deterministic samples of a normal variable, and (d) the QDSMC method with
random timesteps based on Eq. (11) with deterministic samples of a bi-exponential. Each case was imple-
mented as a distinct method in a C++ particle class. The simulations were conducted on a variety of
GNU/Linux-based workstations. Average run times were obtained using the GNU compiler g++ and timing
utility time [22].

Plots of the mass function f(x) for the classic DSMC algorithm, Method (a), are shown in Fig. 2 for the two
cases: 4 particles/cell (top), and 4000 particles/cell (bottom). The results are obtained by running the simula-
tions up to the final time t = 19, and plotting the values of f(x) calculated on the numerical grid. The timestep
was dt = 0.05. The normal random variable in Eq. (1) was sampled with the standard Box–Muller algorithm
[21]. In comparing Fig. 2 with the analytic solution for f(x) at the bottom of Fig. 1, it is seen that the significant
statistical noise in the DSMC method requires a minimum of thousands of simulation particles for sufficiently
accurate results.

Method (b), the exponential random timestep for DSMC described by Eq. (9), showed similar accuracy and
runtime characteristics to standard DSMC. Both cases required thousands of particles/cell for reasonable
fidelity, and had similar run times. Hence, there is no advantage in using a random timestep method in clas-
sical DSMC simulations.

The dynamic range and accuracy of the Quiet DSMC approach, Method (c), allows it to quickly converge
to the correct solution with as little as 2–4 particles/cell. At the top of Fig. 3 is shown a plot of f(x) at t = 19 for
a Quiet DSMC simulation with dt = 0.05 and with 4 particles/cell. It should be compared with the corre-
Fig. 1. Exact solution to the one-dimensional diffusion equation with an initial unit line mass at �8 6 x 6 8. The top plot corresponds to
the initial mass distribution at t = 0 and the bottom plot corresponds to the calculated mass distribution at t = 19.



Fig. 2. Plots of the mass function f(x) evaluated at the grid points of a DSMC simulation with dt = 0.05 and a final simulation time of
t = 19. The upper plot used 4 particles/cell and is extremely noisy. The lower plot used 4000 particles/cell, is hundreds of times slower, and
still exhibits some statistical noise.

W. Peter / Journal of Computational Physics 221 (2007) 1–8 5
sponding DSMC plot with 4000 particles/cell at the bottom of Fig. 2. With 4 particles/cell the deterministic
sampling technique of Method (c) was many hundreds of times faster, and more accurate, than DSMC sim-
ulations with 4000 particles/cell. At the bottom of Fig. 3 is a plot of the mass function from a Quiet DSMC
Fig. 3. Simulation results for the mass function f(x) at t = 19 using the fixed-timestep Quiet DSMC method with 4 particles/cell. The top
plot was run with a timestep dt = 0.05 and the bottom plot corresponds to dt = 1.0. Compare the upper plot to the equivalent DSMC case
using 4000 particles/cell (the bottom of Fig. 2). At a larger timestep dt = 1.0, the simulation has lost fidelity, as shown in the lower plot.



6 W. Peter / Journal of Computational Physics 221 (2007) 1–8
simulation with a much larger timestep (dt = 1.0). In this case, the simulation has clearly lost accuracy, and
will be discussed in more detail below.

In Method (d), the QDSMC algorithm with random timesteps, the update is given by Eq. (11) instead of the
Gauss–Hermite form given by Eq. (3). Simulation times for Method (d) were not significantly faster than that
of Method (c) with the same timestep. However, simulations using Method (d) followed the solution more
accurately at larger timesteps than those using Method (c). Compare the simulation results of Method (c)
shown in Fig. 3 with those of Method (d) in Fig. 4. For dt = 0.05 both methods give similar results for
f(x). For dt = 1.0, however, the solution for f(x) using Method (c) becomes unphysical while the solution
for Method (d) still retains considerable fidelity.

In the numerical runs for Quiet DSMC, the random timestep method consistently gave better results than
the fixed-timestep case even at larger timesteps. For the present example, the fixed-timestep method began to
noticeably lose fidelity at a timestep dt � 0.5, while the random timestep method lost similar accuracy at
dt � 1.5. The capability of using larger timesteps in Method (d) renders this method more computationally
efficient than Method (c).

Why does the random timestep method retain its fidelity at larger timesteps than the fixed timestep method?
Timesteps are restricted in DSMC codes by a requirement that mass elements cannot move a distance greater
than a cell length in one timestep. Requiring particles to remain long enough within a cell ensures that particle
information is properly distributed within the computational grid, and the particles within a cell are able to
interact. If L is the length of a grid cell, this means that a particle cannot travel a distance Dx > L in a timestep
Dt. This timestep restriction is not really a Courant condition, but is actually a requirement on the fidelity of
the solution. That is, violation of the condition may yield solutions that are not physically realistic.

For DSMC simulations, Dx � (2DDt)1/2 from Eq. (1), so the maximum timestep must satisfy Dt � L2/2D.
This is just the Einstein-Smoluchowski equation for a Brownian particle with mean step distance L and mean
time Dt between steps. In DSMC simulations the cell length L is typically identified with the particle mean free
path. At a timestep of dt = 0.05, the step distance in the DSMC simulations of Method (a) with D = 1 is
Dx � (2Ddt)1/2N(0,1) � 0.316 N(0,1). Since the expected value of the normal random variable N(0,1) is zero,
and since L = 0.25 in our example, the relation Dx < L can be satisfied for a significant number of Monte-
Carlo realizations.
Fig. 4. Simulation results at Ætæ = 19 using the random-timestep Quiet DSMC method. The top figure corresponds to a mean timestep
Ædtæ = 0.05, and the bottom figure to Ædtæ = 1.0. Compare the lower plot to the corresponding fixed-timestep plot with dt = 1.0 (bottom of
Fig. 3).



W. Peter / Journal of Computational Physics 221 (2007) 1–8 7
For Quiet DSMC simulations with fixed timesteps and 4 particles/cell, the Gauss–Hermite abscissas are
qi = ±0.742 and qi = ±2.33 (see Ref. [19]). Hence, from Eq. (3), for a timestep dt = 0.05, there are a pair
of steps with Dx = ±0.235 and a pair of steps with Dx = ±0.738. Although the two particles with steps
jDxj = 0.738 > L traverse a distance greater than a cell length in one timestep, the other two particles with
jDxj = 0.235 < L seem to be able to ‘‘regulate’’ the fidelity of the simulation. For the larger timestep
dt = 1.0, the step distances are Dx = ±1.05 and Dx = ±3.30. These step distances are considerably larger than
the cell size L = 0.25 and the simulation (although mathematically stable) becomes inaccurate and unphysical,
as shown at the bottom of Fig. 3.

For Quiet DSMC simulations with exponentially-distributed random timesteps, the position updates are
obtained from Eq. (11) using Gauss—Laguerre abscissas. In the case of 4 particles/cell, the symmetric ± pair
of the first two Gauss—Laguerre abscissas (0.586 and 3.41) are used. For an average timestep Ædtæ = 0.05, the
step sizes are then Dx = ±0.131 and ±0.763, so that the two particles with jDxj = 0.131 < L are able to ‘‘reg-
ulate’’ the accuracy of the simulation. For the timestep Ædtæ = 1.0, the step sizes are Dx = ±0.586 and ±3.41.
Although these step distances are larger than the cell size L = 0.25, there was only a minor (and unnoticeable)
loss in accuracy, as seen at the bottom of Fig. 4. Note that the step size Dx = 0.586 for dt = 1.0 is one-half the
value (Dx = 1.05) of the step size for the fixed-timestep case. In fact, because of the relative magnitudes of the
step sizes for the two cases, the random timestep method seemed to have similar accuracy to the fixed-timestep
method with timesteps a factor �2–4 times larger.

Although both the fixed timestep and random timestep method use Gaussian quadrature, the random time-
step method takes ‘‘deterministic samples’’ of a distribution that is more strongly peaked near the origin. That
is, particles that are sampled from the exponential distribution will have some step distances that are less (and
some that are more) than the corresponding particles from a normal distribution. Those particles that have
smaller step distances Dx < L are able to control the accuracy of the solution. One can compare the magni-
tudes of the smallest QDSMC step size Dxfixed for a fixed timestep to the smallest step size Dxrandom using
a random timestep. For the case above (dt = 1.0), Dxrandom � 0.586, while Dxfixed � 1.05. The ratio of these
steps is essentially the allowable increase in timestep for the random-timestep simulation over the fixed-time-
step case, or a factor Dxfixed/Dxrandom � 2.

The reason for the performance gain is that the distribution function of an exponentially-distributed ran-
dom variable is more sharply peaked near the origin than that of a normally-distributed random variable. In
other words, the symmetric exponential distribution (sometimes called the bi-exponential distribution) has a
higher kurtosis than a normal distribution [5]. Hence, deterministic samples of the symmetric exponential dis-
tribution defined in Eq. (7) have some values less, and some values greater, than the corresponding samples of
a normal distribution. These low-value samples have smaller step sizes which are more likely to satisfy the
accuracy condition Dx < L, and are thus able to ‘‘regulate’’ the fidelity of the solution in cases for which
the deterministic samples from the normal distribution cannot.

An important extension to the present study would be to apply random timestepping to plasma or fluid
simulations. A straightforward way of doing this would to transform the timestep in the field equations to
a random timestep as done in Eq. (4). For example, consider the applicability of the random timestep method
to fluid simulations using QDSMC as described in [16]. The fluid equations are derived from the first three
moments of the Fokker–Planck kinetic equation, which is itself equivalent to the Ornstein–Uhlenbeck (O–
U) process equations [23]. The O–U process consists of a diffusive process (as discussed here) with the addition
of a drift term. Using operator splitting as described in [16], the thermalization term (which describes the relax-
ation of the particle velocity to the local fluid velocity) would now include a bi-exponential probability density
function instead of a Gaussian. The transport term need not undergo any changes. Again, the reason for this is
simply that the change in the thermalization term can be interpreted as an update with the same fixed timestep
dt as used in the transport term, but now with a random displacement described by a bi-exponential proba-
bility density function. Such an analysis could be presented in future work.

In summary, when applied to Quiet DSMC simulations, the random timestep method can be run at time-
steps at least double that of fixed-timestep simulations for the example of the one-dimensional diffusion equa-
tion. Preliminary two- and three-dimensional simulations seem to indicate that this performance gain scales
roughly linearly as the number of dimensions increase. Hence, 2-d is roughly four times faster, and 3-d is
roughly six times faster. Although this performance gain has only been shown for the one-dimensional diffu-



8 W. Peter / Journal of Computational Physics 221 (2007) 1–8
sion equation (which is relevant to a wide number of applications), the concept of accelerating QDSMC by
deterministic sampling of a probability density function of high kurtosis has been demonstrated.

Finally, another benefit in using an exponentially-distributed random timestep over a fixed timestep is that
the intersection of a particle path with a given point can be determined exactly from excursion theory [24,25].
This may be important for simulations involving special boundary conditions. For example, consider the case
of gas or fluid motion in a region bounded by a fixed wall. Using DSMC, the particle position x(t) is known
initially at t, and, by the update Eq. (1), at a time t + dt later. There are cases for which the boundary was
penetrated by the particle between t and t + dt, although at the end of the timestep the particle position
x(t + dt) is on the same side of the boundary as x(t) [25]. This case cannot be determined exactly by using fixed
timestep methods, but can be determined from excursion theory for exponentially-distributed timesteps.

Acknowledgements

I would like to thank Don Lemons of Bethel College and Brian Albright of Los Alamos National Labo-
ratory for illuminating discussions. I also acknowledge the helpful suggestions of the referees in improving the
content of the final manuscript.

References

[1] T. Tajima, Computational Plasma Physics: With Applications to Fusion and Astrophysics, Addison-Wesley, New York, 1989.
[2] C.K. Birdsall, A.B. Langdon, Plasma Physics Via Computer Simulation, Adam Hilger, Bristol, 1991.
[3] K. Jansons, G.D. Lythe, J. Statist. Phys. 100 (2000) 1097.
[4] C.W. Gardiner, Handbook of Stochastic Methods, second ed., Springer, New York, 1985, pp. 106–107.
[5] D.S. Lemons, An Introduction to Stochastic Processes in Physics, Johns Hopkins, Baltimore, 2002.
[6] G.A. Bird, Phys. Fluids 6 (1963) 1518;

G.A. Bird, Ann. Rev. Fluid Mech. 10 (1978) 11.
[7] E.P. Muntz, Ann. Rev. Fluid Mech. 21 (1989) 387.
[8] D.I. Pullin, J. Comput. Phys. 34 (1980) 231.
[9] S. Roy, R. Raju, H.F. Chuang, B.A. Cruden, M. Meyyappan, J. Appl. Phys. 93 (2003) 4870.

[10] M. Wang, Z. Li, Phys. Fluids 16 (2004) 2122.
[11] E.Y.-K. Ng, N. Liu, J. Micromech. Microeng. 12 (2002) 567.
[12] D. Burnett, Proc. London Math. Soc. 40 (1935) 382.
[13] J. Fan, C. Shen, J. Comput. Phys. 167 (2001) 393.
[14] C. Cai, I.D. Boyd, J. Fan, J. Thermophys. Heat Transfer 14 (2000) 368.
[15] L.S. Pan, G.R. Liu, B.C. Khoo, B. Song, J. Micromech. Microeng. 11 (2001) 181.
[16] B.J. Albright, D.S. Lemons, M.E. Jones, D. Winske, Phys. Rev. E. 65 (2002) 055302/1-4.
[17] B.J. Albright, W. Daughton, D.S. Lemons, D. Winske, M.E. Jones, Phys. Plasmas 9 (2002) 1898.
[18] A.L. Garcia, Numerical Methods for Physics, second ed., Prentice-Hall, Upper Saddle River, NJ, 2000.
[19] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
[20] C. Lanczos, Applied Analysis, Prentice Hall, Englewood Cliffs, N.J., 1956.
[21] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed.,

Cambridge University Press, Cambridge, 1992.
[22] More information on these utilities can be obtained from http://www.gnu.org.
[23] D.S. Lemons, B.J. Albright, J. Quant. Spectrosc. Radiat. Transfer 74 (2002) 719.
[24] S. Karlin, H.M. Taylor, A First Course in Stochastic Processes, second ed., Academic Press, New York, 1975.
[25] K. Jansons, G.D. Lythe, Siam J. Sci. Comput. 24 (2003) 1809.

http://www.gnu.org

	Quiet direct simulation Monte-Carlo with random timesteps
	Introduction
	Quiet direct simulation Monte-Carlo
	Using random timesteps to push particles
	Summary of numerical results and conclusions
	Acknowledgements
	References


